Что такое кпд тепловой машины. Тепловые машины

Наверное, каждый задавался вопросом о КПД (Коэффициенте Полезного Действия) двигателя внутреннего сгорания. Ведь чем выше этот показатель, тем эффективнее работает силовой агрегат. Самым эффективным на данный момент времени считается электрический тип, его КПД может достигать до 90 – 95 %, а вот у моторов внутреннего сгорания, будь то дизель или бензин он мягко сказать, далек от идеала …


Если честно, то современные варианты моторов намного эффективнее своих собратьев, которые были выпущены лет так 10 назад, и причин этому масса. Сами подумайте раньше вариант 1,6 литра, выдавал всего 60 – 70 л.с. А сейчас это значение может достигать 130 – 150 л.с. Это кропотливая работа над увеличением КПД, в который каждый «шажок» дается методом проб и ошибок. Однако давайте начнем с определения.

– это значение отношения двух величин, мощности которая подается на коленчатый вал двигателя к мощности получаемой поршнем, за счет давления газов, которые образовались путем воспламенения топлива.

Если сказать простым языком, то это преобразование термической или тепловой энергии, которая появляется при сгорании топливной смеси (воздух и бензин) в механическую. Нужно отметить что такое уже бывало, например у паровых силовых установок — также топливо под воздействием температуры толкало поршни агрегатов. Однако там установки были в разы больше, да и само топливо было твердое (обычно уголь или дрова), что затрудняло его перевозку и эксплуатацию, постоянно нужно было «поддавать» в печь лопатами. Моторы внутреннего сгорания намного компактнее и легче «паровых», да и топливо намного проще хранить и перевозить.

Подробнее о потерях

Если забегать вперед, то можно уверенно сказать что КПД бензинового двигателя находится в пределах от 20 до 25 %. И на это много причин. Если взять поступающее топливо и пересчитать его на проценты, то мы как бы получаем «100% энергии», которая передается двигателю, а дальше пошли потери:

1) Топливная эффективность . Не все топливо сгорает, небольшая его часть уходит с отработанными газами, на этом уровне мы уже теряем до 25% КПД. Конечно, сейчас топливные системы улучшаются, появился инжектор, но и он далек от идеала.

2) Второе это тепловые потер и . Двигатель прогревает себя и множество других элементов, такие как радиаторы, свой корпус, жидкость которая в нем циркулирует. Также часть тепла уходит с выхлопными газами. На все это еще до 35% потери КПД.

3) Третье это механические потери . НА всякого рода поршни, шатуны, кольца – все места, где есть трение. Сюда можно отнести и потери от нагрузки генератора, например чем больше электричества вырабатывает генератор, тем сильнее он тормозит вращение коленвала. Конечно, смазки также шагнули вперед, но опять же полностью трение еще никому не удалось победить – потери еще 20 %

Таким образом, в сухом остатке, КПД равняется около 20%! Конечно из бензиновых вариантов есть выделяющиеся варианты, у которых этот показатель увеличен до 25%, но их не так много.

ТО есть если ваш автомобиль расходует топлива 10 литров на 100 км, то из них всего 2 литра уйдут непосредственно на работу, а остальные это потери!

Конечно можно увеличить мощность, например за счет расточки головки, смотрим небольшое видео.

Если вспомнить формулу то получается:

У какого двигателя самый большой КПД?

Теперь хочу поговорить о бензиновом и дизельном вариантах, и выяснить кто же из них наиболее эффективный.

Если сказать простыми, языком и не лезть в дебри технических терминов то – если сравнить два КПД – эффективнее из них, конечно же дизель и вот почему:

1) Бензиновый двигатель преобразует только 25 % энергии в механическую, а вот дизельный около 40%.

2) Если оснастить дизельный тип турбонаддувом, то можно достигнуть КПД в 50-53%, а это очень существенно.

Так почему он так эффективен? Все просто — не смотря на схожей тип работы (и тот и другой являются агрегатами внутреннего сгорания) дизель выполняет свою работу намного эффективнее. У него большее сжатие, да и топливо воспламеняется от другого принципа. Он меньше нагревается, а значит происходит экономия на охлаждении, у него меньше клапанов (экономия на трении), также у него нет, привычных нам, катушек зажигания и свечей, а значит не требуется дополнительные энергетические затраты от генератора. Работает он с меньшими оборотами, не нужно бешено раскручивать коленвал — все это делает дизельный вариант чемпионом по КПД.

О топливной эффективности дизеля

ИЗ более высокого значения коэффициента полезного действия – следует и топливная эффективность. Так, например двигатель 1,6 литра может расходовать по городу всего 3 – 5 литров, в отличие от бензинового типа, где расход 7 – 12 литров. У дизеля намного , сам двигатель зачастую компактнее и легче, а так же в последнее время и экологичнее. Все эти положительные моменты, достигаются благодаря большему значению , есть прямая зависимость КПД и сжатия, смотрим небольшую табличку.

Однако не смотря на все плюсы у него также много и минусов.

Как становится понятно, КПД двигателя внутреннего сгорания далек от идеала, поэтому будущее однозначно за электрическими вариантами – осталось только найти эффективные аккумуляторы, которые не боятся мороза и долго держат заряд.

«Физика - 10 класс»

Для решения задач надо воспользоваться известными выражениями для определения КПД тепловых машин и иметь в виду, что выражение (13.17) справедливо только для идеальной тепловой машины.


Задача 1.


В котле паровой машины температура 160 °С, а температура холодильника 10 °С.
Какую максимальную работу может теоретически совершить машина, если в топке, коэффициент полезного действия которой 60 %, сожжён уголь массой 200 кг с удельной теплотой сгорания 2,9 10 7 Дж/кг?


Р е ш е н и е.


Максимальную работу может совершить идеальная тепловая машина, работающая по циклу Карно, КПД которой η = (Т 1 - Т 2)/Т 1 , где Т 1 и Т 2 - абсолютные температуры нагревателя и холодильника. Для любой тепловой машины КПД определяется по формуле η = A/Q 1 , где А - работа, совершаемая тепловой машиной, Q 1 - количество теплоты, полученной машиной от нагревателя.
Из условия задачи ясно что Q 1 - это часть количества теплоты, выделившейся при сгорании топлива: Q 1 = η 1 mq.

Тогда откуда А = η 1 mq(1 - Т 2 /Т 1) = 1,2 10 9 Дж.

Задача 2.


Паровая машина мощностью N = 14,7 кВт потребляет за 1 ч работы топливо массой m = 8,1 кг, с удельной теплотой сгорания q = 3,3 10 7 Дж/кг.
Температура котла 200 °С, холодильника 58 °С.
Определите КПД этой машины и сравните его с КПД идеальной тепловой машины.


Р е ш е н и е.


КПД тепловой машины равен отношению совершённой механической работы А к затраченному количеству теплоты Qlt выделяющейся при сгорании топлива.
Количество теплоты Q 1 = mq.

Совершённая за это же время работа А = Nt.

Таким образом, η = A/Q 1 = Nt/qm = 0,198, или η ≈ 20%.

Для идеальной тепловой машины η < η ид.


Задача 3.


Идеальная тепловая машина с КПД η работает по обратному циклу (рис. 13.15).

Какое максимальное количество теплоты можно забрать от холодильника, совершив механическую работу А?



Поскольку холодильная машина работает по обратному циклу, то для перехода тепла от менее нагретого тела к более нагретому необходимо, чтобы внешние силы совершили положительную работу.
Принципиальная схема холодильной машины: от холодильника отбирается количество теплоты Q 2 , внешними силами совершается работа и нагревателю передаётся количество теплоты Q 1 .
Следовательно, Q 2 = Q 1 (1 - η), Q 1 = A/η.

Окончательно Q 2 = (A/η)(1 - η).


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Основы термодинамики. Тепловые явления - Физика, учебник для 10 класса - Класс!ная физика

Работу многих видов машин характеризует такой важный показатель, как КПД теплового двигателя. Инженеры с каждым годом стремятся создавать более совершенную технику, которая при меньших затратах топлива давала бы максимальный результат от его использования.

Устройство теплового двигателя

Прежде чем разбираться в том, что такое КПД (коэффициент полезного действия), необходимо понять, как же работает этот механизм. Без знания принципов его действия нельзя выяснить сущность этого показателя. Тепловым двигателем называют устройство, которое совершает работу благодаря использованию внутренней энергии. Любая тепловая машина, превращающая тепловую энергию в механическую, использует тепловое расширение веществ при повышении температуры. В твердотельных двигателях возможно не только изменение объема вещества, но и формы тела. Действие такого двигателя подчинено законам термодинамики.

Принцип функционирования

Для того чтобы понять, как же работает тепловой двигатель, необходимо рассмотреть основы его конструкции. Для функционирования прибора необходимы два тела: горячее (нагреватель) и холодное (холодильник, охладитель). Принцип действия тепловых двигателей (КПД тепловых двигателей) зависит от их вида. Зачастую холодильником выступает конденсатор пара, а нагревателем — любой вид топлива, сгорающий в топке. КПД идеального теплового двигателя находится по такой формуле:

КПД = (Тнагрев. - Тхолод.)/ Тнагрев. х 100%.

При этом КПД реального двигателя никогда не сможет превысить значения, полученного согласно этой формуле. Также этот показатель никогда не превысит вышеупомянутого значения. Чтобы повысить КПД, чаще всего увеличивают температуру нагревателя и уменьшают температуру холодильника. Оба эти процесса будут ограничены реальными условиями работы оборудования.

При функционировании теплового двигателя совершается работа, по мере которой газ начинает терять энергию и охлаждается до некой температуры. Последняя, как правило, на несколько градусов выше окружающей атмосферы. Это температура холодильника. Такое специальное устройство предназначено для охлаждения с последующей конденсацией отработанного пара. Там, где имеются конденсаторы, температура холодильника иногда ниже температуры окружающей среды.

В тепловом двигателе тело при нагревании и расширении не способно отдать всю свою внутреннюю энергию для совершения работы. Какая-то часть теплоты будет передана холодильнику вместе с выхлопными газами или паром. Эта часть тепловой внутренней энергии неизбежно теряется. Рабочее тело при сгорании топлива получает от нагревателя определенное количество теплоты Q 1 . При этом оно еще совершает работу A, в ходе которой передает холодильнику часть тепловой энергии: Q 2

КПД характеризует эффективность двигателя в сфере преобразования и передачи энергии. Этот показатель часто измеряется в процентах. Формула КПД:

η*A/Qx100 %, где Q — затраченная энергия, А — полезная работа.

Исходя из закона сохранения энергии, можно сделать вывод, что КПД будет всегда меньше единицы. Другими словами, полезной работы никогда не будет больше, чем на нее затрачено энергии.

КПД двигателя — это отношение полезной работы к энергии, сообщенной нагревателем. Его можно представить в виде такой формулы:

η = (Q 1 -Q 2)/ Q 1 , где Q 1 — теплота, полученная от нагревателя, а Q 2 — отданная холодильнику.

Работа теплового двигателя

Работа, совершаемая тепловым двигателем, рассчитывается по такой формуле:

A = |Q H | - |Q X |, где А — работа, Q H — количество теплоты, получаемое от нагревателя, Q X — количество теплоты, отдаваемое охладителю.

|Q H | - |Q X |)/|Q H | = 1 - |Q X |/|Q H |

Он равняется отношению работы, которую совершает двигатель, к количеству полученной теплоты. Часть тепловой энергии при этой передаче теряется.

Двигатель Карно

Максимальное КПД теплового двигателя отмечается у прибора Карно. Это обусловлено тем, что в указанной системе он зависит только лишь от абсолютной температуры нагревателя (Тн) и охладителя (Тх). КПД теплового двигателя, работающего по циклу Карно, определяется по следующей формуле:

(Тн - Тх)/ Тн = - Тх - Тн.

Законы термодинамики позволили высчитать максимальный КПД, который возможен. Впервые этот показатель вычислил французский ученый и инженер Сади Карно. Он придумал тепловую машину, которая функционировала на идеальном газу. Она работает по циклу из 2 изотерм и 2 адиабат. Принцип ее работы довольно прост: к сосуду с газом подводят контакт нагревателя, вследствие чего рабочее тело расширяется изотермически. При этом оно функционирует и получает определенное количество теплоты. После сосуд теплоизолируют. Несмотря на это, газ продолжает расширяться, но уже адиабатно (без теплообмена с окружающей средой). В это время его температура снижается до показателей холодильника. В этот момент газ контактирует с холодильником, вследствие чего отдает ему определенное количество теплоты при изометрическом сжатии. Потом сосуд снова теплоизолируют. При этом газ адиабатно сжимается до первоначального объема и состояния.

Разновидности

В наше время существует много типов тепловых двигателей, которые работают по разным принципам и на различном топливе. У всех у них свой КПД. К ним относятся следующие:

Двигатель внутреннего сгорания (поршневой), представляющий собой механизм, где часть химической энергии сгорающего топлива переходит в механическую энергию. Такие приборы могут быть газовыми и жидкостными. Различают 2- и 4-тактные двигатели. У них может быть рабочий цикл непрерывного действия. По методу приготовления смеси топлива такие двигатели бывают карбюраторными (с внешним смесеобразованием) и дизельными (с внутренним). По видам преобразователя энергии их разделяют на поршневые, реактивные, турбинные, комбинированные. КПД таких машин не превышает показателя в 0,5.

Двигатель Стирлинга — прибор, в котором рабочее тело находится в замкнутом пространстве. Он является разновидностью двигателя внешнего сгорания. Принцип его действия основан на периодическом охлаждении/нагреве тела с получением энергии вследствие изменения его объема. Это один из самых эффективных двигателей.

Турбинный (роторный) двигатель с внешним сгоранием топлива. Такие установки чаще всего встречаются на тепловых электрических станциях.

Турбинный (роторный) ДВС используется на тепловых электрических станциях в пиковом режиме. Не так сильно распространен, как другие.

Турбиновинтовой двигатель за счет винта создает некоторую часть тяги. Остальное он получает за счет выхлопных газов. Его конструкция представляет собой роторный двигатель (газовая турбина), на вал которого насаживают воздушный винт.

Другие виды тепловых двигателей

Ракетные, турбореактивные и реактивные двигатели, которые получают тягу за счет отдачи выхлопных газов.

Твердотельные двигатели используют в качестве топлива твердое тело. При работе изменяется не его объем, а форма. При эксплуатации оборудования используется предельно малый перепад температуры.


Как можно повысить КПД

Возможно ли повышение КПД теплового двигателя? Ответ нужно искать в термодинамике. Она изучает взаимные превращения разных видов энергии. Установлено, что нельзя всю имеющуюся тепловую энергию преобразовать в электрическую, механическую и т. п. При этом преобразование их в тепловую происходит без каких-либо ограничений. Это возможно из-за того, что природа тепловой энергии основана на неупорядоченном (хаотичном) движении частиц.

Чем сильнее разогревается тело, тем быстрее будут двигаться составляющие его молекулы. Движение частиц станет еще более беспорядочным. Наряду с этим все знают, что порядок можно легко превратить в хаос, который очень трудно упорядочить.

КПД тепловой машины связан с количеством теплоты, полученным за цикл от нагревателя, и количеством теплоты, отданным холодильнику, соотношением:

КПД - формула

η= Q полезн. /Q общ. *100%

КПД равен отношению полезного количества теплоты к полному её количеству.

η=A /Q общ. *100%

A - работа.

Полезная теплота (энергия) - энергия, израсходованная только на достижение поставленной цели (в общем плане).

Полная энергия - общее количество затраченной энергии (то есть с учётом потерь на какие-либо факторы).

Полная энергия (для тепловой машины) - сумма полезной энергии и энергии, и энергии, отданной холодильнику: Q полн. =Q полезн. +Q хол.

Значит, полезная энергия равна разности полной энергии и энергии, отданной холодильнику: Q полезн. =Q полн. -Q хол.

Тепловая машина с КПД выше 100% не может существовать.

Если известен процент КПД, то количество теплоты можно рассчитать с помощью пропорций. зная лишь одну из составляющих теплоты и КПД, можно вычислить остальные составляющие. Проценты КПД прямо пропорциональны полезной работе. Например, если КПД тепловой машины равен 10% и эта машина машина совершила работу например в 20 ДЖ за цикл работы, то вся теплота (100%) равна 200 Дж, из которых 180 (90%) отдано холодильнику.

Зависимость КПД от температуры

Также КПД зависит от температуры нагревательного элемента и холодильника:

η=(T н -T х )/T н - КПД равен отношению разности температур нагревателя и холодильника к температуре нагревателя.

Надо учитывать, что температура холодильника не может быть выше температуры нагревателя, иначе тепловая машина не имеет смысла существования.

При неизменной температуре холодильника, чем выше температура нагревателя, тем выше КПД, зависимость по гиперболе.

Внутренняя энергия газа является функцией состояния газа, то есть зависит только от того, в каком состоянии находится газ. Если газ в результате циклического процесса возвращается в исходное состояние, изменение его внутренней энергии будет равным нулю.

Если на диаграмме p-V площадь фигуры, ограниченной линиями циклического процесса отлична от нуля, то газ совершил работу.

При циклическом процессе на диаграмме p-V, если газ совершил работу, значит суммарное количество полученной и отданной теплоты равно нулю, так как всё полученное количество теплоты послностью расходуется на изменение внутренней энергии и на совершение работы газом. Газ при возвращении в исходное состояние имеет ту же внутреннюю энергию, так как она является функцией состояния, а значит, вся полученная энергия была потрачена на работу.

КПД тепловой машины можно увеличить, уменьшив температуру холодильника или увеличив температуру нагревателя.

На диаграмме p-V работа газа в результате циклического процесса соответствует площади внутри цикла.

После совершения любого циклического процесса газ возвращается в первоначальное состояние. Внутренняя энергия является функцией состояния, а значит в результате совершения циклического процесса её изменение равно нулю.

КПД тепловой машины линейно убывает при возрастании температуры холодильника.

На диаграмме p-T газ не совершает работу, если прямая графика изменения его состояния проходит через начало координат, так как в этом случае объём не изменяется.

Положительное количество теплоты самопроизвольно не может перейти от более холодного тела к более горячему.

Нельзя создать циклический тепловой двигатель, с помощью которого можно энергию, полученную от нагревателя, полностью превратить в механическую работу.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что КПД не может равняться 100%.

Второе начало термодинамики: КПД тепловой машины не может быть больше или равен 100%.

Постулат Клаузиуса : "Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Тепло самопроизвольно может переходить только от более горячего тела к более холодному.".

Постулат Томпсона (Кельвина): "Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара".

Возможна передача энергии от тела с меньшей температурой к телу с большей температурой путём совершения работы.

Расширяясь, газ совершает положительную работу, а сжимаясь - отрицательную.

Внутренняя энергия фиксированного количества одноатомного идеального газа зависит только от температуры: ΔU=(3/2)v R ΔT.

При адиабатическом процессе теплообмен отсутствует.

Цикл Карно состоит из двух адиабат, изотермического сжатия и расширения. Внутренняя энергия газа изменяется на адиабатах, то есть на двух участках этого цикла.


Из-за того что часть теплоты при работе тепловых двигателей неизбежно передается холодильнику, КПД двигателей не может равняться единице. Представляет большой интерес нахождение максимально возможного КПД теплового двигателя, работающего с нагревателем температуры Тг и холодильником температуры Т2. Впервые это сделал французский инженер и ученый Сади Карно.
Идеальная тепловая машина Карно
Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Все процессы в машине Карно рассматриваются как равновесные (обратимые).
В машине осуществляется круговой процесс или цикл, при котором система после ряда преобразований возвращается в исходное состояние. Цикл Карно состоит из двух изотерм и

двух, адиабат (рис. 5.16). Кривые 1 -2 и 3-4 - это изотермы, а 2-3 и 4-1 - адиабаты.
Сначала газ расширяется изотермически при температуре Т1. При этом он получает от нагревателя количество теплоты Затем он расширяется адиабатно и не обменивается теплотой с окру-жающими телами. Далее следует
изотермическое сжатие газа при о~ ^
температуре Т2. Газ отдает в этом рис g jg
процессе холодильнику количество теплоты Q2 Наконец газ сжимается адиабатно и возвращается в начальное состояние.
При изотермическом расширении газ совершает работу > 0, равную количеству теплоты При адиабатном рас-ширении 2-3 положительная работа А"3 равна уменьшению внутренней энергии при охлаждении газа от температуры 7\ до температуры Т2: А"3 = -AU12 = ЩТХ) - U (Т2).
Изотермическое сжатие при температуре Т2 требует совершения над газом работы А2. Газ совершает соответственно отри цательную работу А 2
Q2. Наконец, адиабатное сжатие требует совершения над газом работы А4 = AU21. Работа самого
Карно Никола Леонар Сади (1796- 1832) - талантливый французский инженер и физик, один из основателей термодинамики. В своем труде «Раз-мышление о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.) впервые показал, что тепловые двигатели могут совершать работу лишь в процессе перехода теплоты от горячего тела к холодному. Карно придумал идеальную тепловую машину, вычислил коэффициент полезного действия идеальной машины и доказал, что этот коэффициент является максимально возможным для любого реального теплового двигателя. газа А\ = -Л4 = -At/2i = - ЩТх). Поэтому суммарная ра
бота газа при двух адиабатных процессах равна нулю.
За цикл газ совершает работу
А"= А[ + A"2=Q1 + Q2 = IQJ - |Q2|. (5.12.1)
Эта работа численно равна площади фигуры, ограниченной кривой цикла (заштрихована на рис. 5.16).
Для вычисления коэффициента полезного действия нужно вычислить работы при изотермических процессах 1-2 и 3-4. Расчеты приводят к следующему результату:
(5.12.2) Коэффициент полезного действия тепловой машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя.
Можно выразить работу, совершаемую машиной за цикл, и количество отданной холодильнику теплоты Q2 через КПД ма-шины и полученное от нагревателя количество теплоты Согласно определению КПД
Л" = л Количество теплоты
Q2 = А" - = TlQi - Qi = QiOl - D- (5.12.4)
Так как t) |Q2| = (1-71)QI. (5.12.5)
Идеальная холодильная машина
Цикл Карно обратим, поэтому его можно провести в обратном направлении. Это будет уже не тепловая машина, а идеальная холодильная машина.
Процессы пойдут в обратном порядке. Работа А совершается для приведения в действие машины. Количество теплоты Qx передается рабочим телом нагревателю более высокой тем-пературы, а количество теплоты Q2 поступает к рабочему телу от холодильника (рис. 5.17). Теплота передается от холодного тела к горячему, поэтому машина и называется холодильной.?
Количество теплоты Q

Количество теплоты Q2
РаботаА
ХОЛОДИЛЬНИК температуры Т2
Рис. 5.17
Но второму закону термодинамики это не противоречит: теплота переходит не сама собой, а за счет совершения работы.
Выразим количества теплоты Q1 и Q2 через работу А и КПД машины Т|. Так как согласно формуле (5.12.3) А" = riQj = -А, то

(5.12.6)
Передаваемое рабочим телом количество теплоты, как всегда, отрицательно. Очевидно, |Qj| = ^. Согласно выражению
(5.12.4) количество теплоты Q2 = QiCn ~ 1) или с учетом соотношения (5.12.3) (5.12.7)
q2= V1a>0- Такое количество теплоты получает рабочее тело от холо-дильника.
Холодильная машина работает как тепловой насос. Горячему телу передается количество теплоты Qj, большее того ко- личества, которое забирается от холодильника. Согласно фор-муле (5.12.7) Q2 = ^ -А = -Qj - А. Отсюда
| Q1\=A + Q2. (5.12.8)
Эффективность холодильной машины определяется отно-
шением є = -г, так как ее назначение отнимать как можно
большее количество теплоты от охлаждаемой системы при совершении как можно меньшей работы. Величина є называется холодильным коэффициентом. Для идеальной холодильной машины согласно формулам (5.12.7) и (5.12.2)
Qn Т2
т. е. холодильный коэффициент тем больше, чем меньше разность температур, и тем меньше, чем меньше температура того тела, от которого отбирается теплота. Очевидно, холодильный коэффициент может быть больше единицы. Для реальных холодильников он более трех. Разновидностью холодильной машины является кондиционер, который забирает теплоту из комнаты и передает ее окружающему воздуху.
Тепловой насос
При отоплении помещений электрообогревателями энергетически выгоднее использовать тепловой насос, а не просто нагреваемую током спираль. Насос дополнительно будет передавать в помещение количество теплоты Q2 из окружающего воздуха. Однако это не делают из-за дороговизны холодильной установки по сравнению с обычной электрической печкой или камином.
При использовании теплового насоса практический интерес представляет количество теплоты Qj, получаемое нагреваемым телом, а не количество теплоты Q2, отдаваемое холодному телу. Поэтому характеристикой теплового насоса является так на-
lQi|
зываемый отопительный коэффициент?от= .
Для идеальной машины, учитывая соотношения (5.12.6) и (5.12.2), будем иметь Єот=т^V" (5.12.10)
1 1 ~ 1 2
где 7"1 - абсолютная температура нагреваемого помещения, а Г2 - абсолютная температура атмосферного воздуха. Таким образом, отопительный коэффициент всегда больше единицы. Для реальных устройств при температуре окружающей среды t2 = 0 °С и температуре помещения t-l = 25 °С єот = 12. В помещение передается количество теплоты, почти в 12 раз превышающее количество затраченной электроэнергии.
Максимальный КПД тепловых машин
(теорема Карно)
Главное значение полученной Карно формулы (5.12.2) для КПД идеальной машины состоит в том, что она определяет максимально возможный КПД любой тепловой машины.
Карно доказал, основываясь на втором законе термодинамики, следующую теорему: любая реальная тепловая машина, работающая с нагревателем температуры Tt и холодильником температуры Т2, не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.
Рассмотрим вначале тепловую машину, работающую по об-ратимому циклу с реальным газом. Цикл может быть любым, важно лишь, чтобы температуры нагревателя и холодильника были Т1ъТ2.
Допустим, что КПД другой тепловой машины (не работающей по циклу Карно) г\" > Г|. Машины работают с общим нагревателем и общим холодильником. Пусть машина Карно работает по обратному циклу (как холодильная машина), а другая машина - по прямому циклу (рис. 5.18). Тепловая машина совершает работу, равную согласно формулам (5.12.3) и (5.12.5)
A" = r\"Q[ = ^_,\Q"2\. (5.12.11)
Холодильную машину всегда можно сконструировать так, чтобы она брала от холодильника количество теплоты Q2 = \Q2\.

Тогда согласно формуле (5.12.7) над ней будет совершаться работа
А = (5.12.12)
Так как по условию Г|" > т|, то А" > А. Поэтому тепловая машина может привести в действие холодильную машину, да еще останется избыток работы. Эта избыточная работа совершается за счет теплоты, взятой от одного источника. Ведь холодильнику при действии сразу двух машин теплота не передается. Но это противоречит второму закону термодинамики.
Если допустить, что Т| > Т|", то можно другую машину заставить работать по обратному циклу, а машину Карно - по прямому. Мы опять придем к противоречию со вторым законом термодинамики. Следовательно, две машины, работающие по обратимым циклам, имеют одинаковые КПД: г|" = Г|.
Иное дело, если вторая машина работает по необратимому циклу. Если допустить Г)" > Г), то мы опять придем к противоречию со вторым законом термодинамики. Однако допущение Г)"

Это и есть основной результат:

(5.12.13)
КПД реальных тепловых машин
Формула (5.12.13) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, Г| = 1.
Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.
Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 = 800 К и Т2 = 300 К. При этих температурах максимальное значение коэффициента полезного действия равно
Т1 - Т2
Лтах= =0,62 = 62%.
Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40%. Максимальный КПД - около 44% - имеют двигатели внутреннего сгорания.
Коэффициент полезного действия любого теплового
двигателя не может превышать максимально воз-
Т1~Т2
можного значения Лщах = -^-» - абсолют-
11
ная температура нагревателя, а Т2 - абсолютная
температура холодильника.
Повышение КПД тепловых двигателей и приближение его к максимально возможному - важнейшая
техническая задача.